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Penetration of Electromagnetic Fields Through an
Elliptical Hole in a Wall of Finite Thickness

Branislav Radak and Robert L. Gluckstern

Abstract—The penetration of electromagnetic fields through an
elliptical hole of variable eccentricity in a wall of finite thickness
is analyzed. Six cases are considered: p ~ 0, 0.2, 0.4, 0.6, 0.8,
1., where p = (a — b)/(a + b), a and b being semimajor and
semiminor axes of the ellipse. Polarizabilities and susceptibilities
are calculated. Results for zero-thickness wall are compared to
known analytical expressions.

I. INTRODUCTION

HEN A charged particle beam traveling at relativistic

velocity in a beam pipe passes a hole or a slot in
the beam pipe wall, it generates an electromagnetic wakefield
[1]-[3]. This wakefield acts back on the beam perturbing its
motion. The wakefields lead to bunch lengthening and even
instability, and they set a limit on the beam current that can
be carried in the pipe. It is therefore important to determine
the optimum design of holes and slots for purposes, such
as pumping and beam position monitoring, and the extent to
which these holes must be shielded from the beam.

Another motivation for studying the wakefield produced
by a hole or slot is the recent experience in the Large
Hadron Collider (LHC) and Superconducting Supercollider
(SSC) designs [4], [5]. The energy radiated by the circulating
protons is sufficient to cause an excessive heat load on, and
unwanted secondary emissions from, the beam pipe that will be
at liquid helium temperatures. These groups ate now exploring
the use of a liner at liquid nitrogen temperature in which there
are many small holes to provide an adequate vacuum for the
beam. The wakefields caused by these holes must be kept
sufficiently small so as not to disturb the beam significantly.

Let us consider the wakefields of a point charge in a circular
beam pipe with a small hole in the wall. In frequency space
these wakefields are the frequency dependent longitudinal and
transverse coupling impedances [6]. For holes whose dimen-
sions are small compared to the wavelength, the impedances
are obtained from the solutions for the penetration of the static
electric and magnetic fields through the holes. Specifically, one
obtains the induced electric and magnetic dipole moments and
defines a polarizability and two susceptibilities that depend
only on the shape and size of the hole. These quantities were
first calculated analytically by Bethe [7] for a circular and an
elliptical hole in a wall of zero thickness. For other shapes,
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or for a wall with finite thickness, numerical methods are
necessary.

Both the longitudinal and transverse impedances depend
on 1 — ¥, the difference between the susceptibility and the
polarizability. Using the Bethe result for an elliptical slot in a
wall of zero thickness, one sees that ¢ and y approach each
other as the slot lengthens in the direction of the beam (and
becomes narrower in the direction perpendicular to the beam).
This is understandable since the image currents on the wall
will be less disturbed by the slot. Moreover, for a long slot
the geometry becomes two-dimensional and ¢ — x — 0, since
the electric and magnetic results can be obtained from the
same conformal transformation.

The finite thickness of the wall forces one to use a nu-
merical approach. In this work we follow the analysis of
Gluckstern and Diamond [8] for a circular hole in a wall of
finite thickness. They constructed a variational formulation
for both the polarizability and susceptibility and obtained
accurate numerical values by using truncated expansions for
the unknown fields or potentials. In addition they separated
each calculation into a symmetric and asymmetric part, finally
obtaining both “inside” and “outside” polarizabilities and
susceptibilities. The penetration of the fields into the region
outside the hole depends only on ., and Yout. And, if
there are no appreciable fields in the region outside the hole,
the impedances depends only on i, — Xin. In the present
work we try to calculate xin = Xs + Xa» Xout = Xs — Xas
Yin = s + Ya, Your = ¥s — P, for an elliptical hole in a
wall of finite thickness. The subscripts “s” and “a” refer to the
symmetric and antisymmetric configurations for the potentials.

II. GENERAL CONSIDERATION FOR FINITE WALL THICKNESS

The hole in the pipe is of elliptic shape with semimajor
and semiminor axes a and b and with the focal length ¢(c? =
a? — b?) and thickness L. Electric field in the vicinity of the
hole must be perpendicular to the wall, while the magnetic
field is to be parallel.

A. Electric Case

The electric field is decomposed into a symmetric and
antisymmetric geometry as shown in Fig. 1. The coordinate
origin in the middle of the hole, so that the wall surfaces are
at z = +L /2. Since no charges are present we have to solve
Laplace equation for the potential
_ ’d  9%9
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The general solution for the symmetric part of the potential
in the regions |z| > L/2 and |z| < L/2 can be written in
the form:

Doui(7,2) = (E/2)(|2] - L/2) + / G add G

cosh(Ym,n?)

. 2.2
cosh(%fymmL) 22

@fn(f’, z) = Z Dm,nq)m,n(f')

Here, we have & = (01i403j), 0 = \/02 + 02 and a(3) is to
be determined. ®,, ,,(7) is a complete set of appropriate trial
functions that we will have to choose judiciously, and vy,
is the set of eigenvalues of the two-dimensional (orthogonal)
Laplacian

V2®rmn + Yo n @ = 0.

These functions must satisfy the condition @, , (boundary)
= 0, as well as orthonormality conditions

/df’@m,n(F)tbp,q(F) = bmpbng
If we now define
(@) = ®(7,L)2) = / dia(F)e’ T,
we easily get
o(3) = ﬁ / dre= i §()
Dy = / 87D, (7)1 (7). 2.3)

If we now match the derivatives of the potential at z = L/2
and use (2.3), we get

/ dFf(AK(F,7") = E/2, (2.4)
where
K(77') = % / déoe! ™) . g
+y fym,ntanh(%%,nf:) B (M) B (7).

m,n

The kernel K is real and symmetric. To get the variational
form for the polarizability, we start with its definition:

X =3 [ 41,

and then multiply (2.4) by f(7’) and integrate over the hole.
One then obtains

o1 L G FO )
: IREGE |

This is the general variational form for the polarizability for
the symmetric potential. The antisymmetric case has a sinh
function instead of a cosh in (2.2). Formulas derived so far are
valid for any geometry. We now turn our attention to elliptical
geometry and compare the elliptical coordinates and “angular”

2.5)
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Fig. 1. An electric field perpendicular to the wall is split into symmetric and
antisymmetric components.

and “radial” functions with their cylindrical counterpatts (see
Appendix):

Elliptical case Cylindrical case

x = ccosh(€) cos(n), = = rcos(p)
y = csinh(¢)sin(n), = rsin(9)
z =z, 2=z

“Angular” function Segm n(hom.n,n)  cos(2me)

“Radial” function  Jesm n(homn:€)  Jom(pnr/a)

where Ja.,(p,) = 0. The constant ¢ in the previous formula
is the eccentricity of the ellipse. We also have a = ccosh &,
b = csinh &y, where a and b are the semimajor and semiminor
axes of the ellipse, and & is the value of the “radial” coordinate
& at the wall surface of the hole. The dependence of the
“angular” function on the radial index n, occurring in the
elliptical case, contributes greatly to the analytic and numerical
complications in the present analysis.

The Laplace equation in elliptical coordinates has the fol-
lowing form:

1
c2(cosh® £ — cos2 n)
oo g oo
8¢z o2 ' 022

Vztb(x,y,z) =

) =0, (2.6)

and we look for the solution in the form ®(z,y,z) =
F(€) G(n) Z(z) in which case the Laplace equation splits
into the following three equations:

a2z
—d;*z" = ]{72Z(Z),
2 ~
% = (b—h2cosh?§)F(E),  (Tabe)
d2G .
o = —(b— h?cos? n)G(n),

where k and b are separation constants and h = ck. The last
equation is the well-known Mathieu equation. The second one
is the so called modified or radial Mathieu equation that is
obtained from the original one by replacing the real argument
by an imaginary one. The solutions of these equations and
their stability properties are well documented [9]-[11].
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Fig. 2. First several be and bo curves. Parameter b is on the horizontal
axis, h is on the vertical one. From left to right the curves are:
beg, boy . beq, beg, bos. bey, bos, bex,.

The potential outside and inside the hole for the symmetric
case has the form

Blens) = (B2 -2+ Y [ an
m=0"0
X Ao (h)e%(”'“%)Rezm(h €.m),

Z Z ng nRe2’n‘L n(th ns f? 77)

m=0n=1
cosh(ham nz/c)
cosh(hom nL/2¢)

2(&m,2)

(2.8)

We use here the notation Reon,(h,€,1) = Seam(h,n)
Jeam (h, €). Here Se is the solution of (2.7¢), Je is the solution
of (2.7b) (see Appendix), and Resy, . is Rexn(h = h,).
where h,,n = 1,2,3,... is a collection of points on the
curves beg,,m = 0,1,2,..., for which Jes,,(hn,%5,1) = 0,
&o is the value of & at the wall, and Ay, (h) and Ds,, ,, are
to be found. We now use the matching conditions that the
potentials and their first derivatives are equal at z = +1L/2.
This gives us the following two equations:

> / dhAgmRean,
m=0"0

— {Zm’n Dzm,nR627n7n lf f S 60
0

if £> &
(2.9 a,b)

E/2 - Z/O dh%AZmRezm
m=0

= E D2m.nRe2m,n
m.n

h m,n
20’ tanh(ham o L/2¢).

The simplest way to handle these two equations is to first
express A’s in terms of D’s from (2.9a) and to put the result
for A’s back into (2.9b). We therefore multiply (2.9a) by
(cosh? € — cos® n)Reg, (B, €,7m) and integrate in the interval
from 0 to oo in £ and from O to 27 in . After using (A.13c¢)

we get:

2h
As(h) = TN (B (h)231)21)7911(217#1)(2m)(h)7
™YY pig
o p2m . )
Iiap gyamy(h) = /0 ; dédn(cosh® & — cos® i)
X Re(2p,q)(2m) (67 n)Re2m(h7 &, 7))-

This expression for A is substituted in (2.9b) and the whole
equation is multiplied by (cosh® ¢ — cos?n)Res, , and inte-
grated from O to & in £ and from O to 27 in 7. After again
using (A.13), one obtains:

Z Z{Q(Qp.q)(?r,s) + -2-h2p.q tanh (h2p,q§‘c>

r=0s=1
wckE
M2P~¢16p7“5q5}D2r.s = TTQP,(I, 2.10)
where
Q2p,q)(2rs) = ZO / NZm

x I(Zp,q><2m)(h)f<2r,s)(2m)(h),
Eo 2w
Topq = /0 /0 dédn(cosh® & — cos? n)Regp.q,

and My, , is defined in (A.13). Equation 2.10 is a matrix
equation in the D’s. Numerical analysis shows thalt it is enough
to keep only three curves—beg, beo, bes (r = 0, 1, 2) on which
the quantities (), M and T are to be calculated, and to take
30 points on each curve (s = 1,2,...,30).

Asymptotic expression (see Appendix) tells us that ¢, M
and 7" have simple exponential factors that can be taken out:

P
Top,q = €779y, q,

_ ,2h2p 4 A/
Map,q = ™27 1 Map g,
hopgthars

@2.11)

Q(2p,g)(2rs) = € Q(2p.9)(2r,5)-

Solving matrix equation 2.10 completely specifies the sym-
metric part of the potential both inside and outside the hole.
In order to quantify our results, we calculate the electric
polarizability:

2
Xs = 'E dvcdy(ps(‘E: y,z = L/2)
hole

Z ZDZm 'nT?'m ,ne

m=0n=1

2.12)

If we introduce the notation:
= T L
Z€2p,q)(2r,s) = Q(Qp,q)(2r,s) + §h’2qu tanh (h2P7<1 %)
X Mo ¢6prdys,

combining with (2.11), we get

Y Zapapans)

eh.?r,> D2r,s) =
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TABLE 1

fin E%ﬁ VERSUS L/b

L/b p=24810"2 p=02 p=04 p=06 p=08 p=1.0
0 0.6382 0.7563 0.8567 0.9326 0.9818 1.000
0.01 0.6274 0.7452 0.8454 0.9211 0.9696 0.9884
0.02 0.6193 0.7363 0.8358 0.9110 0.9592 0.9778
0.1 0.5856 0.6946 0.7872 0.8572 0.9020 0.9194
0.2 0.5678 0.6701 0.7570 0.8228 0.8648 0.8811
1.0 0.5476 0.6348 0.7089 0.7649 0.8008 0.8147
2.0 0.5473 0.6329 0.7057 0.7608 0.7960 0.8097
o 0.5473 0.6329 0.7057 0.7608 0.7960 0.8097
1 T T T T T T T T T
0 95 ]
0.9 H i
g o® p=l e0.8 .
2
[ 0.8 -
a p=0.6
o 0.7 .
2 ¥ ot
i 0.7 =
i 0.65 - =0 2 |
0.6 J
p=0.00248
0.55 F 4
0.5 . . . . . ) . . A

0 02 0.4 0.6 08 1 12 1.4 1.6 18 2

L/b
Fig. 3. fon = 23“;‘2 versus L/b. Uppermost curve has the value of
p = 1.0,; the lowest one is for p = 2.48 x 103,

Therefore, the final expression for the polarizability is:

Z TZP,q

(p.r)(a,9)

(2p,q)(2r s)TQT g (213)

For the antisymmetric case we have:

B(6,1,2) = £(E/D(2 - /D £ Y / dh

m=0
X Ao (e #(1- ) Rezum (B, €, 1),
(D?n(§777a Z ZD2m nReam n(h2m n &, )
m=0n=1
sinh(hom nz/c)
Sioh(hamnL/2¢)’ 2.14)

where + is for z > L/2 and — for z < —L/2. This gives
us the result

Xa = —5~ Z T2p,q(Za_l)(Zp,q)(Zr,s)TZT,sa
(p,7)(4:8)
2.15)
- T
Z&p,q)(%‘,s) = Qp.g)(2r,s) T §h2p,q

L
x tanh™! (th,q )M2p q0prqs)

197

3 chi{an)/(2 p1 a b"2)

Fig. 4. fin = 23 L% versus p. Uppermost curve has the value of L = 0.0,
followed by the curves with the parameter L = 0.02,0.1,0.2,0.5,1.0, and
2.0.

In order to simplify the matrix Z one calculates

1
Lepaem (M) = g7z —Kepaoem (M)
P-q

X [JQQm dJZZp,q ]

Y

£o

with K defined as:

2
K gy (amy(hapr B) = /0 dnSesp o (ap.qsm)Sezm (hy ).

The properties of the quantity K are discussed in the Appen-
dix.

The calculations are done for different shapes of the ellip-
tical hole. A convenient parameter is p = (a — b)/(a + b).
Inside and outside polarizabilities are xi, = xs + X, and
Yout = Xs — Xa- 1he circular case corresponds to p = 0O
(& — o0). We have analysed five cases: p = 0.00248 (§p =
3),p=0.2,04,0.6, and 0.8. For the values of p > 0.8, it is
difficult to obtain good results using the asymptotic expansion
for the Mathieu function. Such cases should be done purely
numerically (by the Jacobi relaxation method, for example).
The case p = 1 is done by Schwarz-Christoffel method and is
explained in the next section. In order to compare the results
for different cases we keep the area of the ellipses constant
(ab = const = 1) and change the thickness of the wall L.
For L = 0, results are known (see, for example [7]) and we
get three significant figures of accuracy. For zero thickness,
the result is

1 3

x  2mwab?

b? L
22 E(m):/0 dny/1 —msin® 7.

On Fig. 3. and in Table I, we display results for fi, =
3./ (2mab®) versus L/b. Fig. 4. shows the same quantity
versus p. Fig. 5. and Table IT show log{xous/x0) versus L/b,
where yq is the value of x at L = 0.

E(m),
where

m=1-—
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TABLE II
log(Nout/x0) VERSUSL/b.
L/b p=24810"3 p=0.2 p=04 p=0.6 p=0.8 p=10
0 0.000 0.000 0.000 0.000 0.000 0.000
0.01 —3.66110"% -3.624107% -3.42410"% _—2.866 1072 —2.816 162 —2.794 102
0.02 -7.12010"% —6.18210"% -—6.07110~2 -5.904 10-2 —5.804 10~2 —5.268 102
0.1 -3.208107! -2.68110"' -2.55610"! -—2.456 10~! —2.400 10-* -2.167 10!
0.2 —597310"' —508110"! —4.768 10°' —4.521 10" -—4.45510"! -3.987 10~
1.0 —2.582101° 2218 10*° —2,040 107 —1.932 10*° —1.859 10t —1.699 101°
2.0 —4.985101° 4,267 10%° -3.89710%° 3,693 10%° —3.533 101° —3.283 101°
. . ‘ K . . i ‘ . . TABLE III
fa E%ﬁ VERsUS L/a
-0.2
Lja p=24810"% p=02 p=04 p=06 p—0.38
§ i 0 1.269 0.9546 0.7233 0.5423 0.3840
3 0T 0.01 1.240 0.9333 0.7043 0.5249 0.3637
B ot 0.02 1.217 0.9147 0.6877 0.5086 0.3462
z b 0.1 1.106 0.8155 0.5975 0.4226 0.2597
f ok \ =0 00248 A 0.2 1.031 0.7477 0.5353 0.3641 0.2081
3 1.0 0.9055 0.6346  0.4320 0.2702 0.1360
g 1 2.0 0.8995 0.6294 0.4274 0.2662 0.1332
B er ] o0 0.8995 0.6294 0.4274 0.2662 0.1332
sl _
_20 02 0.4 0.6 08 L}b 12 14 1.6 1.8 2 — Hxig; %X ‘___*; %X 4___)
Fig. 5. log(%) 5 % versus L/b The uppermost curve has the value | ‘ - ‘ . + ——J L
of p = 1.0; the lowest one is for p = 2.48 x 1073, :i;: —

B. Magnetic Case

We decompose the magnetic case too into the symmetric
and antisymmetric part as in Fig. 6., and we treat separately
two situations H, # 0, H, = 0 and H, = 0, H, # 0. For the
case H, # 0, we need a solution that should be even when
n — —n and odd when n — 7 — . When H, #0,H, =0
the symmetry is opposite. That allows us to write the solution
for the potential in the form

—xH£/2+ Z/O dhAgm-}-l(h)
m=0
X e—%(|z\—%)Re2m+1(h7§,77)~

T, 2)

Z 2 Dg’m—l—l,nR‘eZ'm-l-l,n

m=0n=1

Vo (&m, 2)

sinh(hop,1..2/c)

sinh(hom41.,,L/2¢)"

X (h2m+1,n,€,m) (2.16)

U 2) = —yHy 2+ Y / dh
m=0 0

b

X Agm—{—l (h)e——?(}z‘—%)ROZWH-l (h7 57 77)7

o0 o0
UL (§m,2) = Z Z ng+1.nR02m+1,n

m=0n=1

sinh(hon,+1.n2/c)
sinh(hom+1 o L/2¢)

X (hom+1,n,€, 1) (2.17)

H , symmetric H , antisymmetric

Fig. 6. Separation of magnetic fields in both directions into symmetric and
antisymmetric components,

Here, we have Rogpy1 = Joamy1(h, €)So2ma1(h,n) and
ham+in m=0,1,2,...,n=1,2,3,... is a set of points on
the curves bea,, 11, bo2,, 11 Where 8‘]6’02”*1;22”“'"’5) e, =0
in the H, and H, cases respectively. In the antisymmetric
case, sinh(«) will be replaced by cosh(a), @ = hoyy1,,2/c
Or & = hgp41,nL/2c. These two sets of equations are treated
separately and in the same way as in the electric case. With
the help of (A.13) one calculates:

8,L,Y Rorq1,s {7 L.l — Y
ZZ(2p+1,q)(2r+l,5)(e V27’+1,9) = —cH; ,T5,0 1 4

r,8
(2.18)
with the following definitions:
ERRY — A 7Th_1
GrrLo@r1s) = Qepriaerrs) T 5l
X tanh(h2p+1’qL/20) _;éil,qépT(sqS?

’l,?y

2 —
Vj?r-i—l,s ;h2"’+1’5 tanh 1(h27+175L/2C)D§;‘?{|‘1,8’

oo 00 1
dh————
mz::O/O Nam+1(h)

X Iop1,g)2m+1) (P 2t 1,5) @m+1) (B),

Q(2p+l,q)(2r+1,s)
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TABLE IV
log(¥xx,out /®zr,0) VERSUS L/a
Lfa p=2.4810"% p=0.2 p=0.4 p=0.6 p=0.8
0 0.000 0.000 0.000 0.000 0.000
0.01 —2.78310"% —2.80510"2 —2.83310"% —2.89510"2 —6.345 102
0.02 —6.12110"2 —6.20810"%2 —6.557 102 —6.766 102 ~1.179 10~1
0.1 —2.66110"' —2.73710"' —2.91310"' —3.22210"%' -4.607 10!
0.2 —4.84410"! _—5.00610-! -5.30310"' -5.83910"! -7.799 10!
1.0 —2.01210%0 2,087 10+° —2,118 10*°® —2.219 10%® —2.504 10+°
2.0 —3.85710t° _3.924 101 —4.000 107° —4.109 10*° —4.400 101°
TABLE V
fy = 23;”;’5’2 VErsus L/b L " ' T ' " i ' T :
L p=0 p=02 p=04 p=06 p=08 p=1.0 t2p 1
0 1.273 1.168 1.095 1.044 1.013  1.000
0.01 1.246 1.146 1078 1.031  1.001 0.9884 ¢ [ pro-o0ase ]
0.02 1.225 1129 1.063 1.018 0.9898 0.9778 ELl ]
0.1 1.108 1.035 0.9848 0.9504 0.9285 0.9194 < p=0.2
0.2 1.032 0.9739 0.9336 0.9060 0.8885 0.8811 e L .
1.0 0.9099 0.8731 0.8477 0.8303 0.8193 0.8147 H p=0.4
2.0 0.9038 0.8675 0.8424 0.8252 0.8143 0.8097 n oap 0.6 1
oo 0.9038 0.8675 0.8424 0.8252 0.8143 0.8097 . — .
. b )
& 2w 0 ; : - : s : F— .
T;p+17q = / / dde[(COShzf _ COS2 7]) 0 0.2 0.4 06 0.8 L}b 1.2 1.4 1.6 1.8 2
0 0 Fig. 7. f» = 313” 2~ versus L/a. Uppermost curve has the value of

X cosh & cos nRezp+1,q5

§o  p2m
Tpi1,q = /0 /0 dédn(cosh? & — cos®n)

x sinh € sin nRo%p+1,4,
1

laprigemin(h) = g7 —Keprigemin(h)
Pd
dJeQm—l—l
J omil 2.1
X {e2p+1,q de an (2.19)

and with (2.11) valid in this case too. The quality M is
defined in (A.13) with R being Re and Ro in H, and H,
case, respectively. Antisymmetric case will have tanh(a) —
tanh™(a) in (2.192) and (2.19b).

The quantity that we now calculate is the tensor of suscep-
tibility:

'lpwacH + 1;Z)3011-Er14 = :cdxdsz(x,y,z = L/2)7

hole

ydzdyH,(x,y,2 = L/2) (2.20)
hole

This tensor will be diagonal if we choose the axes of the
ellipse, so we can write

1
‘/J.’Ew = 77 ;cdxdsz(x, Y,z = L/2>’
Hw hole
1
Yyy = 7 ydrdyH.(z,y,2 = L/2) (221
Hy hole

where H, in the upper equation is induced by H, and in
the lower equation is induced by IH,. Using the elliptical

p = 2.48 x 1073; the lowest one is for p = 0.8.

coordinates and the induced field H, = ~g—’f we have
71'02 2z 2
¢mm = _iﬁ"z%m—i—l,nTZm—{—l,n
x
Yyy = Z 2m-+1,n 2m+1 n

ymn

Inverting (2.18) we obtain the final form for the susceptibilities

s,a

g ¥ = - T
zx T _2_ Z T2$p—|—1,q(Zs,al)(2P+1=<1)(27'+1s3)T;'"+175’
(p,r)(q,S)

5 X

(p.r)(a,9)

s,a __ —1 Y
Yyy = 2p+1,q s,a)(2p+1,q)(2r+l,s)T2r+1,s-

(2.22)

The Z matrix is defined on the beg,,41 curves in H, case
and on the boy,, 11 curves in H, case. For zero thickness,
we express known results in the form of the standard elliptic
integrals

- gj’g—mm) - B(m),
T = Fragiy (m — DI (m) + B(m),

b2 L P
m:l—ﬁ, E(m):/ dny/1—msin®n,
0
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TABLE VI
log{thyy out /¥yy,0) VERSUS L/b
L/b p=10.0 p=0.2 p=10.4 p=0.6 p=0.8 p=1.0
0 0.000 0.000 0.000 0.000 0.000 0.000
0.01 —3.65510"%2 -3.11610"2 —2.806 10~2 —-1.74110"2 -1.70110"2 —-1.699 10~
0.02 —6.616 1072 —6.037 1072 —5.61210"2 —4.49910"2 —-4.41310"2 —4.39710°?
0.1 —-2.71010"' -2.57410"! —-2.486 10-! —2.34910~! —2.23910-! —2.16710°%
0.2 —4.89510"' —4.71510"Y —4.59510"! —4.49910"! —4.32010"% -3.986 10!
1.0 -2.014 107° —1.97510t° —1.942 10t° —1.893 101t° —1.825 10t° —1.699 10*°
2.0 -3.856 1070 3,784 10t —3.711 10t° —3.636 10*° —3.512 10*® —3.283 10*°
1.3 T T T T T T T T T
14 T T T J—
12 R
= 1 - g i
‘m [
a A ]
) 08 T @
S 3 1
;‘ n.6 - S B
- 0.4 4 o
0.2 N 4
00 02 04 06 08 3 o 02 0.4 06 08 L}b 1.2 1.4 16 1.8 2
P
3tyye
; — 3¥aa,in _ Fig. 10. fy = =2&5™ versus L/b. Uppermost curve has the value of
Fig. 8. = . .= 0.0, v wab?
ig. 8. fz 53 versus p. Uppermost curve has the value of L. = 0.0 p = 0.0; the Ioweszt gﬁe is for p = 1.0.

followed by the curves with the parameters L = 0.02,0.1,0.2,0.5,1.0, and
2.0. Exact results are known for L = 0.0 curve; it has the value 0.0 forp = 1.

p=0.00248

log(psi(xz ,out)/psi(za,0))+(pr L}/ (2 &)

L/a

Fig. 9. log(m) +7 % The uppermost curve has the value of

Wex.0

p = 2.48 x 1073, the lowest is for p = 0.8.

K(m)= / ’ dn—hl—.
0 V1 —msin®n
We find it convenient to define f, = 3t,./(27a3), f, =
3,y /(2mab?), where the susceptibilities are calculated inside
the hole. These quantities are drawn in Figs. 7 and 10 for
different values of p versus L/a for the z case and L/b for
the y case. The normalized susceptibilities outside the hole
for different values of p are shown in Figs. 9 and 12. Tables
III-VI contain that information in numerical form.

HI. INFINITELY LONG ELLIPTICAL HOLE

This case corresponds to b/a — 0, ie. p = 1, and can
be treated as 2-dimensional case (see Fig. 13). The Schwarz-
Christoffel transformation is used: the polygon (1, 2, 3, 4, 5) in
Fig. 13 in the original geometry is transformed into the upper
half of the w-plane by the transformation

dz = dw(w + P) " Tw ™3 (w — Q)3 (3.1)

3

where P and @ are real and positive and are found from the
width of the hole b and the thickness of the wall L:

z3 0
b:/0 dz:/_Pdw(w—l-P)_%w"%(w—Q)%
=2y P+ QE(m),

where m = P/(P + ). We also have

Zé - /Z4 dz = 2i/P + Q(K(m1) — E(m1)),

23

(3.2)

mq = 1-— m,
so that the combination of the last two formulas will give:

L _ K(ml) — E(ml)

— B(m) (3.3)

26

In order to get the polarizability, we have to integrate the
potential along the line orthogonal to the y axis (1, 2 line in
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o
¢
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o
a
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-
. 3/
Fig. 11. f, = ;’:’;’g;” versus p. Uppermost curve has the vlaue of L = 0.0,

followed by the curves with the parameters L = 0.02.0.1,0.2,0.5,1.0, and
2.0.

Fig. 13) in the z-plane and emanating from point 4. Integration
is done in the w plane and we get:

z .y E@6,m)
Zd =20 4
b T Em) (34
where § = o + i and E(8,m) = fog dp\/1 — msin® .
In the symmetric case the transformation w = —#2 brings

the potential to the form & = (E/2)Re(t). In the antisym-
metric case the transformation is w = #? and the potential
becomes ® = (E/2)Im(v). Combining now the formulas 3.2,
3.3, and 3.4, one obtains

P, <x,y = P—) = E bym cos o cosh 3,

2] 2 E(m)
P, (x,y = g) = gg\(/z cos a sinh 3. (3.5)

The real variables « and 3 are found numerically by inverting
(3.4) for y = L/2 and 0 < = < b. This inversion is achieved
by the use of Mathematica, which handles special functions
with ease. Integrating (3.5) gives the numerical results accurate
to four significant figures, as can be confirmed by reducing
the integration step in a few sample calculations. They give
the values of x and 4, for p = 1. Further reduction of the
integration step would increase the accuracy, but the time of
integration would also increase. The compromise gives the
achieved accuracy.

IV. SUMMARY

The penetration of electric and magnetic fields through
an elliptical hole in a wall of finite thickness has been
investigated. The inside and outside polarizability of the hole
are calculated as a function of the parameter p = (a—b)/(a+b)
and the relative thickness of the wall (L/a or L/b) and
displayed in Figs. 3, 4, and 5.

The inside and outside magnetic susceptibilities of the hole
in two perpendicular directions (parallel to the major and
minor axes of the ellipse) are calculated and shown in Figs.
7-12. A combination of analytical treatment of the Mathieu
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log(psa(yy.out)/psi{yy,0)}+(p1 L}/ (2 b)

-0.8 L 1 L L L 1 L 1 L
0 0.2 0.4 0o 0.8 1 12 14 1.6 1.8 2

Fig. 12. log (%}9—3;—;“) —|—§ %. The lowest curve has the value of p = 0.0;

the uppermost is for p = 1.0.

1 z .
4 5 7
w

[<—
L 2 p 3
.g Q <—
< 2 | 4 >
T 1 3 5
2b
Fig. 13.  The Schwarz-Cristoffel transformation maps the polygon (1,2,3,4,5)

in the z plane into the upper half of the w plane. The upper half of w plane
is then mapped into the ¢ plane in which the potential is homogeneous.

equation and numerical results gives good results for the
values of the parameter p < 0.8. The Schwarz-Cristoffel
conformal mapping technique gives the solution to the problem
for p = 1. By judicious choice of plotted variables, we were
able to interpolate smoothly, and thus cover the whole region
0 < p < 1 corresponding to all values of eccentricities of the
ellipse.

For the magnetic susceptibility in « direction, we know that
for any thickness L of the wall the value of 1., must be zero
when p = 1. We were not able to find a simple dependence
of 94, on p for 0.8 < p < 1 when L # 0.

Our results are in good agreement (four significant figures)
with the known results for different limiting cases: 1) when
the thickness of the wall goes to zero (analytical results are
available), 2) when the ellipse approaches the circle (the
results are given in [8]), and 3) when b/a — 0, in which
case a two-dimensional problem is obtained and solved by
the Schwarz-Cristoffel conformal mapping technique. The
analysis of the general case that we present in this paper is
based on the properties of the Mathieu equation and differs
mutually from any of the three methods used to calculate the
three limiting cases.

V. APPENDIX

In what follows, the basic properties of the solutions of the
Mathieu and the modified Mathieu equations are analyzed.
Most of the analytic and numerical results we need are
assembled in [11], but the numerical results give the properties
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of these solutions only for h < 10. Asymptotic expression of
the solution of the periodic equation is not valid in the whole
region (0, 27). Since we need the solutions for A up to 2000,
more numerical and analytical work is needed.

A. Characteristic Values

We are looking for the solutions of the Mathieu equation that
are periodic with periods = and 27. The values of b that give
such solutions for any given h are called the characteristic
values. They, of course, depend on h and comprise curves
be,,(m=0,1,2,3,...)and bo,,,(m = 1,2,3,...) in the (b, h)
plane (Fig. 2). From each of the points m2(m =1,2,...),
two curves originate (bo, and be,,), the first one being
positioned to the left with respect to the latter one. From
the point (0, 0) only one curve originates—beg. The curves
bo,,(m = 2,4,6,...) are not displayed since we do not need
them. For small & we use power series expansion [12], for
intermediate values (5 < A < 100) we use numerical methods,
and for large values of & and asymptotic series is given:

[ee]

b= E a.h™*, (A.1)
i=—1
where the first several terms are: a_; = v,
2 3 4 2
ag —_ v ;—l, a1 —_ Vv ;SV’ as = _ 5v +341/ 49 a3 =
330544100 + 4051 _ 630° +1260u +9943V +486
R a4 » 45
_ 527’ +156170° +690011/ +41607v and v = 2r + 1 for the

function be, and v = 2r — 1 for the function bo,.. We achieve
high accuracy for these curves (at least 10 significant figures).

B. Solutions

The symmetry conditions require that in the electric case we
take only those solutions that are periodic with period = and
symmetric with respect to transformation 7 — —. That brings
us to the curves bes,, i = 0,1,2,... where the solution has

the form
G(n) = Sezm(h, 1) Z Bej,r* (h) cos(2n),
m—0,1,2,.... (A2)
The normalization condition that we use is
Gn=0=1= iBegz‘(h) =1. (A.3)

n=0
Inserting the Fourier series (A.2) into the differential equation
(2.7¢), one derives (Beil" By,,):
By = ko By,
By = ke By — 2By,
K3, Bap = Bonya + Banos

by, = h™2(4b — 2h% — 4m?). (A4)
If one defines G, = By, /Bm—2, m = 2,4, ... one has:
Go = ko, Gy=ky—2/ko,
Gan = k2n 2 — ! T n>2 (AS5)
k2n_q —

[E—
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which together with (A.3) gives us the values for Be3™ (h).
Since in (A.5) we have to divide by terms that can be zero, we
use relational approximation for treating continued fractions
[8], which gives us results accurate to at least 10 significant
figures, but only for £ < H,.,. = 20.00. This is because Be%Z‘
alternate in signs, grow exponentially, but have to satisfy
A.3, so for A =~ 50 one would have to know B’s with the
accuracy of 22 significant figures in order to satisfy (A.3)
to two significant figures. This forces us to use asymptotic
expression for values of A > 20.

The solution for two different magnetic cases will be of the
form:

HI¢O, Hy:0:>G( )ESe2m+1(h ’I])
= Z Be g’r’fjll (h) cos[(2n + 1)7],
H, = 0, H # 0= G(n) = SOzm+1(h 17)

= Z Bogriht (k) sin{(2n + 1)n].

(A.6)

This is so because we want the solution to be even for
77 — —n and odd for » — @ — 9 when H, # 0 and to
have opposite symmetry when H, # 0. The relevant formulas
for Besn"(h) and Bos7 (k) are derived in an analogous
way to those in (A.2)~(A.4). The solutions for the modified
(radial) Mathieu (2.7b) are given as:

F(&) = Jearsp(h,€)
= /7/2(-1)" Z

k=0

F(&) = Jogryp(h, &)
=/ D (=1)*2k +p)
k=0
x Bo2r 2 (h) Japyp(h cosh §), (A7)

2k+p

where r = 0,1,2,..., p = 0,1, Je,, is defined on be,,(h),
Joy, is defined on bo,,(h) and J’s are the Bessel functions.
The normalization in these solutions is chosen in such a way

to give simple asymptotic expansion when £ — oo:
Jem (h, &) = Jom (B, £)
= cos[hcosh & — (2m + 1)w/4]//hcosh €.

Unfortunately, numerical analysis shows that this simple
asymptotic expansion is good only for moderate values of
h—when (A.7) converges rapidly enough. The other solution
to (2.7b) blows up at the origin and is not of interest.

C. Asymptotic Expressions Elementary numerical analysis
shows that the solution for the Mathieu equation has expo-
nential behavior for large values of h. Since the solution for
the radial equation is related to the solution of the Mathieu
equation by the replacement of a real argument by a purely
imaginary one, one can look for the solution of the radial
equation in the following form [11]:

F(e) = 0@ y(e) |1+ ¢1T(€) n ¢2(2€)

1)*Be §Zi§(h)=]2k+p(h cosh &),

(—=1)" tanh(¢

+ ... ,
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Substituting this expansion into 2.7b and using A.1 one arrives
at:

Je, 2 [Fy(§) cosa + Fi(£) sina]\/hcosh§,
Jopq1 2 [Fo(€)sina — Fi(€)cosaly/hcoshé, (A.8)

where a = hsinh § — (2r+ 1) arctan(tanh(£/2)), v = 2r+1,
and
v

Fol© =1+ 4hcosh? £

1 [v* 48602+ 105
h2 [ 512 cosh? ¢ B
1 [305 + 29002 + 16270
n3 { 2048 cosh® ¢
205 + 1240° + 11220
B 2048 cosh* ¢
Vo + 1407 + 330
2048 cosh? ¢ }
(v® + 3)sinh &
16h cosh? ¢
sinh & 4° + 44v
128h2 cosh? & cosh® ¢
+ sin h& {uﬁ + 50524 + 121392 + 10395
h? 24576 cosh® ¢
V8 — 47v* 4+ 66702 + 2835
24576 cosh* ¢
504 + 34072 +9
2048 cosh? ¢ }

vt + 2207 + 57
512 cosh? ¢

Fi(§) =

{1/3 +3v+

This expansion easily gives us six significant figures accuracy
for any h > H,... The same procedure will gives us the
expansion for Se and So solutions of the Mathieu equation:

Se,(h,n) = o {W1[Po(n) — P1(n)]
+ WalPo(n) + Pi(n)]},

Sort1(h,n) = Ty 1 {W1[Po(n) — Pi(n)]
= Wa[Fo(n) + Pi(n)]},

where v = 2r + 1 and

(A.9)

Wi(n) = ehsinm [cos (g + %)] 2TH/(cos )L,

Wa(n) = o—hsinn [Sin (g n %)]Zr—i—l/(cos Tl)r+1_

or(h) = or=3% [1 + ﬁ + 41:/:2;23 19;;;;?9” + ..]:1
Trt1(h) = o3 [h —v/4— 2,/;2:; S _ 7V;5—ghi7y .. .}—l

and where Py(n) and Pi(n) are obtained from Fy(&) and
Fy(&) by substitution coshé — cosn and sinhg — sinn.
Since in the process of deriving (A.9) we had to divide by
cos 7, it comes to no surprise that (A.9) is divergent at 7 /2.
Taylor series expansion is used in the region around 7/2 and
matched with the formulas A.9. Here comes the first serious
problem: At what point between 0 and 7/2 do we match A.9
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and the Taylor expansion? Numerical analysis shows that that
point depends strongly on r and on h. We are at this point
tempted to find another asymptotic expansion for the solution
of (2.3c)—WKB expansion.

The solution of the equation d;g()" - AQ(nG(n) = 0
for A large can easily be expanded into series in 1/A. But
the Mathieu equation gives us two problems here: Q(n) =
(b—cos? i) has second-order zero 7 /2, thus giving the solution
in terms of the confluent hypergeometric function of the third
kind (Whittaker functions) [14], which are difficult to handle
when we impose boundary conditions (A.3), and worse, b
depends on A, which has the effect that the independent
expansion variable in the Whittaker function also depends on
h. Numerical trials show that for A we are interested in that
series does not converge.

That sends us back to A.9. We find numerically that the
point p(h) between 0 and 7/2 at which matching is done
depends on h in a simple way: p(h) = Y .o g:h™%, where
only several terms are needed and where constants g; depend
on which curve be,., bo,. we are on. Twenty terms in the Taylor
expansion and 5 terms in p give us 4 to 5 significant figures
for any h.

We now look in some details at the following constructs:

27
Nom(h) = / dn[Seam (b )2
1]
=n[2B2+ B2+ B2 +--1,

2n
N1 (h) = / dn[Seam+1(h, n)]?
¥}
= (Bl + Bi+ B+,

2
N (h) = / 0[S0z 1 ()2
0

=u[B2+BZ+B2+--]. (A.10)

The right hand sides are numerically valid for A < H,, = 20.
For higher values of h expansion A.9 is used together with
the Laplace method for the asymptotic evaluation of integrals
(see, for example [15]). It follows that

NE© = %\/ge%zvmh), m=0,1,2,..., (A1l

where N&° = 3" a;h~" and only several terms are needed
to achieve desired accuracy.
Next we take the cross product

27
K(62’2+r,q)(2m+7‘) (hqa h) = /0 G2p+r,q(hq7 W)G2m+r(ha 77)7

r=20,1, p,m=0,1,2,...,

where G = Se, So and h, is a certain fixed value of & on the
corresponding curve be or bo. If both G’s are evaluated on the
same curve (m = p) K #0forhy =hand K =0forh, = h
if m # p. Using (A.9) and the Laplace method, we obtain:

K Gptrayemry (g b)
__ 1 TR (h — hy) Ke° (hy, 1)
T pmAptr Ee 4 (2p+r,g)(2m4r)\ "W T
(A.12)
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with s =0if p=m,s =1 if p# m,h = 3(h+hy) and
K = 372372 aijh*hy7. Again, only several terms are
to be calculated. for h < H,,, the K’s are calculated in terms
of the B’s, like in (A.10).

C. Orthonormality Relations

There are several orthonormality relations satisfied by the
solutions of the Mathiecu and modified Mathieu equations
which we need. They are listed below:

27
/ d')]Gm(h, W)Gp(h, 77) = 6mme(h)7
0
o p27
/ / dédn(cosh? € — cos® ) Rinn Rpg = Smp6ngMmn,
0 0 :

[e'e) 27T
/0 dédn(cosh® € — cos® n)Run (b, &, )Ry (R, €, 1)

0
= 57%5@ — 1")6mp N (h), (A.13)
The function G is Se or So, Bmn = Rm(hn,&n),

Ru(hn, &,1) = G(h,n) Fin(h,€), Fn(h, &) = Jem(h,§) or
Jom(h, &) and & is the value of the radial elliptical coordinate
£ at the wall of the hole. At that point and for special values

of h = hyg, and h = hgq,s = 1,2,3,...,Jeam(hg, &) = 0,

3,0 hs, . .
and 8Jcogmy (ko) 0. These relations are derived from

the differen?iéal equations 2.7b,c only. Equations are written
for different characteristic values, multiplied by appropriate
solutions corresponding to any other characteristic value, and
summed, subtracted, and integrated by parts, in the process of
which some terms drop out due to the boundary conditions.
For the relation A.13c we also need the asymptotic forms for
Je and Jo (the one following formula A.7). The parts of the
quantity M,,, containing only periodic solutions can easily
be calculated in terms of coefficients B,,, while the parts that
contain Je or Jo solutions must by integrated numerically.
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