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Penetration of Electromagnetic Fields Through an

Elliptical Hole in a Wall of Finite Thickness
Branislav Radak and Robert L. Gluckstern

Abstract—The penetration of electromagnetic fields through an

elliptical hole of variable eccentricity in a wall of finite thickness
is analyzed. Six cases are considered: p z O, 0.2, 0.4, 0.6, 0.8,
L, where p = (a – b)/(a + b), a and b being semimajor and

semiminor axes of the ellipse. Polarizabilities and susceptibilities

are calculated. Results for zero-thickness wall are compared to
known analytical expressions.

I. INTRODUCTION

w

H13N A charged particle beam traveling at relativistic

velocity in a beam pipe passes a hole or a slot in

the beam pipe wall, h generates an electromagnetic wakefield

[1]-[3]. This wakefield acts back on the beam perturbing its

motion. The wakefields lead to bunch lengthening and even

instability, and they set a limit on the beam current that can

be carried in the pipe. It is therefore important to determine

the optimum design of holes and slots for purposes, such

as pumping and beam position monitoring, and the extent to

which these holes must be shielded from the beam.

Another motivation for studying the wakefield produced

by a hole or slot is the recent experience in the Large

Hadron Collider (LHC) and Superconducting Supercollider

(SSC) designs [4], [5]. The energy radiated by the circulating

protons is sufficient to cause an excessive heat load on, and

unwanted secondary emissions from, the beam pipe that will be

at liquid helium temperatures. These groups are now exploring

the use of a liner at liquid nitrogen temperature in which there

are many small holes to provide an adequate vacuum for the

beam. The wakefields caused by these holes must be kept

sufficiently small so as not to disturb the beam significantly.

Let us consider the wakefields of a point charge in a circular

beam pipe with a small hole in the wall. In frequency space

these wake fields are the frequency dependent longitudinal and

transverse coupling impedances [6]. For holes whose dimen-

sions are small compared to the wavelength. the impedances

are obtained from the solutions for the penetration of the static

electric and magnetic fields through the holes. Specifically, one

obtains the induced electric and magnetic dipole moments and

defines a polarizability and two susceptibilities that depend

only on the shape and size of the hole. These quantities were

first calculated analytically by Bethe [7] for a circular and an

elliptical hole in a wall of zero thickness. For other shapes,

Manuscript received December 10, 1993: revised March 11, 1994. This
work was supported in part by U.S. Department of Energy.

The authors are with the Department of Physics and Astronomy, University
of Maryland at College Park, College Park, MD 20742-411 USA.

IEEE Log Number 9406796.

or for a wall with finite thickness, numerical methods are

necessary.

Both the longitudinal and transverse impedances depend

on @ – x, the difference between the susceptibility and the

polarizability. Using the Bethe result for an elliptical slot in a

wall of zero thickness, one sees that @ and x approach each

other as the slot lengthens in the direction of the beam (and

becomes narrower in the direction perpendicular to the beam).

This is understandable since the image currents on the ‘wall

will be less disturbed by the slot. Moreover, for a long slot

the geometry becomes two-dimensional and ~ – x ~ O, since

the electric and magnetic results can be obtained from the

same conformal transformation.

The finite thickness of the wall forces one to use a nu-

merical approach. In this work we follow the analysis of

Gluckstern and Diamond [8] for a circular hole in a wall of

finite thickness. They constructed a variational formulation

for both the polarizability and susceptibility and obtained

accurate numerical values by using truncated expansions for

the unknown fields or potentials. In addition they separated

each calculation into a symmetric and asymmetric part, finally

obtaining both “inside” and “outside” polarizabilities and

susceptibilities. The penetration of the fields into the region

outside the hole depends only on @OUt and XOUt. And, if

there are no appreciable fields in the region outside the hole,

the impedances depends only on ~in – xi.. In the present

work we try to calculate Xin = XS + x~, x~~t = X5 — Xa,

Vi. = & + 0., O..t = & – O. for an elliptical hole in a
wall of finite thickness. The subscripts “s” and “a” refer to the

symmetric and antisymmetric configurations for the potentials.

II. GENERAL CONSIDERATION FOR FINITE WALL THICKNESS

The hole in the pipe is of elliptic shape with semimajor

and semiminor axes a and b and with the focal length C(C2 =

az – bz) and thickness L. Electric field in the vicinity of the

hole must be perpendicular to the wall, while the magnetic

field is to be parallel,

A. Electric Case

The electric field is decomposed into a symmetric and

antisymmetric geometry as shown in Fig. 1. The coordinate

origin in the middle of the hole, so that the wall surfaces are

at z = +L/2. Since no charges are present we have to solve

Laplace equation for the potential
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The general solution for the symmetric part of the potential

in the regions IZI > L/2 and IZI < L/2 can be written in

the form:

/
@~ut(F, Z) = (E/2)(lzl – L/2) + d7a(8)ei7’~-atlZl-~/2j

@;*(F, z) = ~ Dm,n@m,n(F)
cosh(-ym,n~)

cosh(~T~,~L) “
(2.2)

m,n

Here, we have d = (ol~+ az~), a = ~= and a(c7’) is to

be determined. @~,n(fl is a complete set of appropriate trial

functions that we will have to choose judiciously, and Tm,m

is the set of eigenvalues of the two-dimensional (orthogonal)

Laplacian

2a symmetric antisymmetric
potential potential

Fig. 1. An electric field perpendicular to the wan is split into symmetric and
antisymmetric components.

and “radial” functions with their cylindrical counterparts (see

Appendix):

vbm,n + T:,n@m,n = 0. Elliptical case Cylindrical case

These functions must satisfy the condition @m,. (boundary) x = ccosh(~) COS(q), z = r COS(@)
= O, as well as orthonormality conditions g = csinh(~) sin(q), y = r sin(d)

If we now define “Angular” function Sez~,~(hz~,~, n) cos(2rn4)

Jf(?’) - OS(F, L/2) = dtia(d)e’~”~,

we easily get

a(d) = &
J

dFe-id”Ff(F’)

D m,n =
/

dF’’m,n(F’)f(F’). (2.3)

If we now match the derivatives of the potential at z = L/2

and use (2.3), we get

/
dP’f(F)K(F, F’ ‘) = E/2, (2.4)

where

+ ~ -y~,.tzmh ();%rd @m,Tr(K)@rn,n(F’).

m,n

The kernel ~ is real and symmetric. To get the variational

form for the polarizability, we start with its definition:

~,=;
/

d?~(~),

and then multiply (2.4) by ~(F”) and integrate over the hole.

One then obtains

_l _ ~ dFdF’j(F)K(F, F’)f(F’)
x, – [f dF’f’(~]2 “

(2.5)

This is the general variational form for the polarizability for

the symmetric potential. The antisymmetric case has a sinh

function instead of a cosh in (2.2). Formulas derived so far are

valid for any geometry. We now turn our attention to elliptical

geometry and compare the elliptical coordinates and “angular”

“Radial” function Je2~,n(h2m,n, ~) .12m(p~r/a)

where J2m (pn ) = O. The constant c in the previous formula

is the eccentricity of the ellipse. We also have a = c cosh co,

b = c sinh &o, where a and b are the semimajor and semiminor

axes of the ellipse, and go is the value of the “radial” coordinate

& at the wall surface of the hole. The dependence of the

“angular” function on the radial index n, occurring in the

elliptical case, contributes greatly to the analytic and numerical

complications in the present analysis.

The Laplace equation in elliptical coordinates has the fol-

lowing form:

and we look for the solution in the form O(Z, y, Z) =

F’(t) G(q) Z(Z) in which case the Laplace equation splits

into the following three equations:

d2Z

d~2
— = k’z(z),

d2F
~ = (g - h2 cosh2 c)~(f), (2.7a,b,c)

d2G
— = -(~ - h2 COS2 v) G(q),
dq2

where k and 6 are separation constants and h = ck. The last

equation is the well-known Mathieu equation. The second one

is the so called modified or radial Mathieu equation that is

obtained from the original one by replacing the real argument

by an imaginary one. The solutions of these equations and

their stability properties are well documented [9]–[1 1].
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Fig. 2. First several be and bo curves. Parameter ~ is on the horizontal

axis, h is on the vertical one. From left to right the curves are:
bee, bol. bel, bez, boJ. bed, bos, be~.

Thepotential outside andinside thehole for the symmetric

case has the form

Q:ut((, q, z) = (E/2)(lz[ - L/2)+ ~~o Jm dh

x A2~(h)e~(lZ1-:) ReZ~(h, c.q),
cam

@~n(&,q, z) = ~ ~ D2m,nRe2WL,m(h2~,., f, q)
rn=orr=l

x cosh(~2v~/c) (2.8)
cosh(h2~, &/2c) “

We use here the notation Regm(h, (, q) = Sezm(h, q)

Je2~ (h, ~). Here Se is the solution of (2.7c), Je is the solution

of (2.7b) (see Appendix), and Re2n1,n is Re2.Z (h = h,,),

where hm, n = 1,2,3, . . . is a collection of points on the

curves be2~, m. = O, 1,2, ..., for which Je2~(hn) co, ~) = O,

COis the value of & at the wall. and A2m (h) and Dan,. are
to be found. We now use the matching conditions that the

potentials and their first derivatives are equal at z = +L/2.

This gives us the following two equations:

03 .,-Y---z] dhA2mRe2m
m=o o

-{

~m,n D2m,nRe2,n,n if& <to
—

o if~>fo

(2.9 a,b)
mm

E/2 – ~ ~ dh~A2mRe2.
m=tl o

‘x
h2m,n

D2mnRe2m, n — tanh(h2~,n~/2c).
c

m.n

The simplest way to handle these two equations is to first

express A’s in terms of D’s from (2.9a) and to put the result

for A’s back into (2.9b). We therefore multiply (2.9a) by

(coshz ~ – COS2q) Re2P(h’, ~, q) and integrate in the interval

from O to cc in & and from O to 27r in q. After using (A. 13c)

we get:

A2m(h) = 2h x DwJ(2p,q)(2m)(h)>7rfv2m(h) ~,q

1(2p,q)(2m)(h) - /co /zm d&dq(cosh2 f – COS2 q)

xORe(~p,q)(z~J(f, q)Rez~(h, C,~).

This expression for A is substituted in (2.9b) and the whole

equation is multiplied by (coshz t – COS2q) Rezp,q and inte-

grated from O to co in ~ and from O to % in ~. After again

using (A. 13), one obtains:

}

~cE
M2p,q6pvSqs Dzr,s = ~T2p,q, (2.10)

where

Cmw

4?(2p>q)(2T’>s)= El dh&
mzo o

x J(zp,q)(zm)(h)~(zr,s)(zrn)(h),

‘co 2T

T2P,q E
//

d&dq(cosh2 ~ – COS2q) RezP,q,
00

and M2P,q is defined in (A. 13). Equation 2.10 is a matrix

equation in the D‘s. Numerical analysis shows that it is enough

to keep only three curves—be., be2, be4 (r = O, 1,2) on which

the quantities Q, ill and T are to be calculated, and to take

30 points on each curve (s = 1,2,. ... 30).

Asymptotic expression (see Appendix) tells us that Q, M
and T have simple exponential factors that can be taken out:

T2P,q = e&q~2P,q,

M2P,q = e%w~2P,q, (2.11)

Q(2P,q)(2~.~)= eh’pq+hzrsQpp,q)(2~,~).

Solving matrix equation 2.10 completely specifies the sym-

metric part of the potential both inside and outside the hole.

In order to quantify our results, we calculate the electric

polarizability:

Xb =

—

2

/~ hole

d.cdy@5(.c, y, z = L/2)

gFF D2m,n T2m>n. (2,12)
‘m+.l n=l

If we introduce the notation:

‘?2p,q)(2r,s) - Q(2P,q)(2r,s)
()

+ ~hzp,q tanh hzp,q~
—

66x M2p, q pr qs>

combining with (2. 11), we get

xz?2P>q)(2..)(e’’’r’”~ 2s) = %p%r
T,s
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TABLE I

fin ❑* VERSUS L/b

L/b p=2.4810-8 p=0,2 p=O.4 p=O.6 p=O.8 P=l.O

o 0.6382 0.7563 0.8567 0.9326 ‘ 0.9818 1.000

0.01 0.6274 0.7452 0.8454 0.9211 0.9696 0.9884

0.02 0.6193 0.7363 0.8358 0,9110 0.9592 0.9778

0.1 0.5856 0.6946 0.7872 0,8572 0.9020 0.9194

0.2 0.5678 0.6701 0.7570 0.8228 0.8648 0.8811

1.0 0.5476 0.6348 0.7089 0.7649 0.8008 0.8147

2.0 0.5473 0,6329 0.7057 0.7608 0.7960 0,8097

co 0.5473 0,6329 0.7057 0.7608 0.7960 0.8097
—

o 95

0.9

0 85
~=1

/

P=0,8

0.8 /

/
P=0,6

0.75

/
D.O.4

0,7

0.65
/

E’. o 2

0,6

/
P=0,00248

0,55

0,5 I J

0 020.40.608 121,41.6182

L;b

Fig. 3. f,. ~ & versus L/b. Uppermost curve has the value of

p = 1.0,; the lowest one is for p = 2.48 x 10–3.

Therefore, the final expression for the polarizability is:

For

‘x~.=~
~2P, dz1)(2p,q)(2r,s) ~2r)s. (2.13)

(P,r)(q,s)

the antisymmetric case we have:

x A2m(h)e -~(lll-~)Re~~(h,~,q),

cow

sinh(h2~,nz/c)

x sinh(h2m,n~/2c)’
(2.14)

where + is for z > L/2 and – for z < –L/2. This gives

us the result

7rc3 —

x. = ~ ~ ~2p,q(z1)(2p,q) (2?., s)~2.,s>

(P,r)[q,s)

(2.15)

() L
x tanh- 1 bP>ll~ ~zp,q~prsqs,

05 I I
0 0.2 04 06 08 1

P

Fig. 4. f,n = & versus p. Uppermost curve has the value of L = O.0,

followed by the curves with the parameter L = 0.02,0.1,0.2,0.5,1.0, and
2.0.

In order to simplify the matrix Z one calculates

1(2P,q)(2m)(h) = h, _1h2 K(2P,q)(2m)(h)

2p,q

with K defined as:

1

27r
K(2p,q)(2m)(h2p,q, h) ~ d@e2P,q(h2P,~,n)sez~(h, q).

o

The properties of the quantity K are discussed in the Appen-

dix.

The calculations are done for different shapes of the ellip-

tical hole. A convenient parameter is p = (a – b)/(a + b).

Inside and outside polarizabilities are ~in = X. + X. and

x..t = x. – x.. The circular case corresponds to P = O
(co ~ co). We have analysed five cases: p = 0.00248 (t. =

3.), p = 0.2,0.4,0.6, and 0.8. For the values of p >0.8, it is
difficult to obtain good results using the asymptotic expansion

for the Mathieu function. Such cases should be done purely

numerically (by the Jacobi relaxation method, for example).

The case p = 1 is done by Schwarz-Christoffel method and is

explained in the next section. In order to compare the results

for different cases we keep the area of the ellipses constant

(ab = const = 1) and change the thickness of the wall L.
For L = O, results are known (see, for example [7]) and we

get three significant figures of accuracy. For zero thickness,

the result is

1 — *E(m),i–
where

On Fig. 3. and in Table I, we display results for ,fin =

3X,. /(2~ab2) versus L/b. Fig. 4. shows the same quantity

versus p. Fig. 5. and Table II show log(XOUt /x. ) versus L/b,
where XO is the value of x at L = O.
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TABLE II

10g(,\out /xo ) VERSUSL/b.

-4..!! p = 2.4810-9 p = 0.2 p = 0.4 P = 0.6 p = 0.8 p= 1.0

0 0.000 0.000 0.000 0.000 0.000 0.000

0.01 –3.661 10-2 –3.624 10-2 –3.424 10-2 –2.866 10-2 –2.816 10-2 –2.794 10-3

0.02 –7.120 10-2 –6.182 10-2 –6.071 10-2 –5.904 10-2 –5.804 10-2 –5.268 10-2

0.1 –3.208 10-1 –2.681 10-1 –2.556 10-1 –2.456 10-1 –2.400 10-1 –2.167 10-1

0.2 –5.973 10-1 –5.081 10-1 –4.768 10-1 –4.521 10–1 –4.455 10-1 –3.987 10-1

1.0 –2.582 10+0 –2.218 10+0 –2.040 10+0 –1.932 10+0 –1.859 10+0 –1.699 10+0

2.0 –4.985 10+0 –4.267 10+0 –3.897 10+0 –3.693 10+0 –3.533 10+0 –3.283 10+0

-2 I I
0 0> 0.40.608 12141.61.82

L;b

()~lg. 5. log ~ + ~ ~ versus L/b The uppermost curve has the value

of p = 1.0; the lowest one k for p = 2.48 x 10–3.

B. Magnetic Case

We decompose the magnetic case too into the symmetric

and antisymmetric part as in Fig. 6., and we treat separately

two situations Hz # O, Hy = O and Hz = O,Hy # O. For the

case Hz # O, we need a solution that should be even when

q d –~ and odd when ~ h z – rj. When Hy # O,Hz = O
the symmetry is opposite. That allows us to write the solution

for the potential in the form

x (h,m+,,n, f, ‘v),:&(y;+:’:;;;:)“ (2.16)
-,

sinh(h2n,+1,nz/c)
x (hzm+l, n, <, q) (2.17)

sinh(h2Tn+l, ~. L/2c)”

TABLE 111

f. = ~ VERSUS L/a

L/a p = 2.4810-3 p = 0.2 p=O.4 p=O.6 p=O.8

o 1.269 0.9546 0.7233 0.5423 0.3840

0.01 1.240 0.9333 0.7043 0.5249 0.3637

0.02 1.217 0.9147 0.6877 0.5086 0.3462

0.1 1.106 0.8155 0.5975 0.4226 0.2597

0.2 1.031 0.7477 0.5353 0.3641 0.2081

1.0 0.9055 0.6346 0.4320 0.2702 0.1360

2.0 0.8995 0.6294 0.4274 0.2662 0.1332

w 0.8995 0.6294 0.4274 0.2662 0.1332

!L.=ll-tJL

<–--——— >

H ~ symmetric H ~ antisymmetric

Fig. 6. Separation of magnetic fields in both directions into symmetric and
antisymmetrlc components,

Here, we have Rozn+l = Jo2~+l (h, f) So2n+l(h, q) and

hzm+l,n, m = 0,1,2, . . ..n = 1,2,3, . . . is a set of points on

the curves be2m+1, bo2~+l where
~Je,02m+l (~2?n+ln>E) ,fo = ~

c?if
in the Hz and HV cases respectively. In the antisymmetric

case, sinh(a) will be replaced by cosh(a), a = h2m+1,mz/c

or a = h2m+l,nL/2c. These two sets of equations are treated

separately and in the same way as in the electric case. With

the help of (A. 13) one calculates:

V,s

(2.18)

with the following definitions:

z
—

&!1,cr)(2r+1>s) s Q(2~+Im~+I,s)+ ;hipl+l,q
—

x tanh(h2p+l, qL/2c)~~~~l,q~p. ~q. >

V$.’:l,, = ~hz~+l,, tanh–1(h2~+l,. L/Qc)DSJ\l,.,

mm

Q(2P+1,q)(2r+1,,) = EJ dh 1
N2m+1(h)m=o o

x ~(2p+l,y)(2m+1) (h)~(2r+l,s)(2rn+l) (~)>
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TABLE IV

lod$xx,outfd%~,o) VERSUSL/a

L/a p =2.4810-s p = 0,2 p = 0.4 p = 0.6 p = 0.8

0 0.000 0.000 0.000 0.000 0.000

0.01 –2.783 10-2 –2.80510-2 –2.83310-2 –2.89510-2 –6.34510-2

0.02 –6.121 10-2 –6.20810-2 –6.55710-2 –6.76610-2 –1.17910-1

0.1 –2.661 10-1 –2.737 10-1 –2,91310-1 –3.22210-1 –4.60710-1

0.2 –4.844 10-1 –5.00610-1 –5.30310’-1 –5.83910-1 –7.79910-1

1.0 –2.012 10+0 –2.057 10+0 –2,118 10+0 –2.21910+0 –2.50410+0

2.0 –3.857 10+0 –3.924 10+0 –4.00010+0 –4.10910+0 –4.40010+0

TABLE V
fv F% VERSUSL/b

L P=I) p = 0.2 p = 0.4 p = 0.6 p = 0.8 p = 1.0

0 1.273 1.168 1.095 1.044 1.013 1.000

0.01 1.246 1.146 1.078 1.031 1.001 0.9884

0.02 1.225 1.129 1.063 1.018 0.9898 0.9778

0.1 1.108 1.035 0.9848 0.9504 0.9285 0.9194

0.2 1.032 0.9739 0.9336 0.9060 0.8885 0.8811

1.0 0.9099 0.8731 0.8477 0.8303 0.8193 0.8147

2.0 0.9038 0.8675 0.8424 0.8252 0.8143 0.8097

CO 0.9038 0.8675 0.8424 0.8252 0.8143 0.8097

12

1

/

P= O.00248

0,8

/

L-’.2.2

0.6

/

D=O.4

0,4

/

P=O.6

x cosh [ cos nRe2p+l,q,

x sinh < sin qRozP+l,q,

1
I(Zp+l,q)(zm+l) (h) = hz _ h;p,q ~(2P+l,4(2m+l) (h)

[

dJe2m+1
x Jezp+l,q 1d< <0‘

(2.19)

and with (2. 11) valid in this case too. The quality M is

defined in (A. 13) with R being Re and Ro in HZ and Hv

case, respectively. Antisymmetric case will have tanh(a) +

tanh-l(a) in (2.19a) and (2.19b).

The quantity that we now calculate is the tensor of suscep-

tibility:

/
4.3. + G.yHy = ~o,ezdzdyHz(z, y, z = L/2),

This tensor will be diagonal if we choose the axes of the

ellipse, so we can write

+Zz .-1-
/HC hole

xdxdyHz(x, y, z = L/2),

J
4YY = & ~o,e ydxdyHz(x, y, z = L/2) (2.21)

where Hz in the upper equation is induced by Hz and in

the lower equation is induced by Ify. Using the elliptical

0,2

t=

/

P=0,8

i

O( J
0 0.2 0,4 0 6 0.8 1 1.2 1,4 1.6 1,8 2

L/b

Fig. 7. f. = * versus L/a. Uppermost cnrve has the value of

p = 2.48 x 10–3; the lowest one is for p = 0.8.

coordinates and the induced field Hz = – ~ we have

4.. = –gxwm+l,n%+l,n
x m,n

Inverting (2. 18) we obtain the final form for the susceptibilities

3

‘4%$ = ; ~ ~;p+l,q(z;:)(2P+l,q) (2r+l,s)~;r+l,s>

(P,r)(q?s)
-3

‘i$f = ; ~ %’,+l,,(z;:)(zp+ l,,)(zr+l,s)n.+ l,s.

(p>r)(q,s)

(2.22)

The Z matrix is defined on the bezm+l curves in Hz case

and on the boz~+l curves in HY case. For zero thickness,

we express known results in the form of the standard elliptic

integrals

1

$=
&(K(m) - E(m)),

xx
1

4,, =
/J2m((. - I)K(m) -t- E(m)),
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TABLE VI

10d@YY,OUt/@yy,O) VERSUSL/b

L/b p = 0.0 p = 0.2 p = 0.4 p = 0.6 p = 0.8 p= 1.0

0 0.000 0.000 0.000 0.000 0.000 0.000 —

0.01 –3.65510-2 –3.116 10-2 –2.80610-2 –1.741 10-2 –1.701 10-2 –1.69910-2

0.02 –6.61610-2 –6.03710-2 –5.61210-2 –4.49910-2 –4.41310-2 –4.39710-2

0.1 –2.710 10-1 –2.57410-1 –2.48610-1 –2.34910-1 –2.23910-1 –2.16710-1

0.2 –4.895 10-1 –4.715 10-1 –4.595 10-1 –4.499 10-1 –4.320 10-1 –3.986 10-1

1.0 –2.014 10+0 –1.975 10+0 –1.942 10+0 –1.893 10+0 –1.825 10+0 –1.699 10+0

2.0 –3.856 10+0 –3.78410+0 –3.711 10+0 –3.636 10+0 –3.512 10+0 –3.283 10+0

14,
1

12

1

09

0.6

0.4

0.2

L=2

o
n 02 04 06 08 1

P

Fig.8. fx z _ versus p. Uppermost curve hasthevalueof L. = 0.0,
followed bythecurves with thepuameters L= O.02, O.l, 0.2, O.5,l.O, and
2. O. Exact results areknownfor L =0, Ocurve; ithasthe value O.Oforp= 1,

02

0

-0,2

-0 4

-O 6

-0.8

-1

-1 2

-1,4 I I
o 0204060,8 1.2 1,4 1,6 1,8 2

L;,

p=

We

‘ig ‘ ‘“d=) + ~ ~. The uppermost curve has the value of

2.48 x 10–3, the lowest is for p = 0.8.

find it convenient to define f= = 3Jzr/(2fla3), .fV =
3@gy/(2nab2), where the susceptibilities are calculated inside
the hole. These quantities are drawn in Figs. 7 and 10 for

different values of p versus L/a for the z case and L/b for

the y case. The normalized susceptibilities outside the hole

for different values of p are shown in Figs. 9 and 12. Tables

III–VI contain that information in numerical form.

1,3

1 25

12

i
p=o 0

1 15

1.1

1 05

1

0 95

“.. .
0 020.40608 1.2 1,4 1 6 1.8 2

L ;b

Fg 10. fu G %~r# versus L/b. Uppermost curve has the value of
p = 0.0; the lowest one is for p = 1.0.

III. INFINITELY LONG ELLIPTICAL HOLE

This case corresponds to b/a ~ O, i.e. p = 1, and can

be treated as 2-dimensional case (see Fig. 13). The Schwarz-

Christoffel transformation is used: the polygon (1, 2,3,4, 5) in

Fig. 13 in the original geometry is transformed into the upper

half of the w-plane by the transformation

d,z=du(w +P)-+w-*(w -Q)+, (3.1)

where P and Q are real and positive and are found from the

width of the hole b and the thickness of the wall L:

b=J3d’=Lpdw(w+P)-*w-*(w – Q)*

= 2/~E(m), (3.2)

where m = P/(P + Q). We also have

ml=l —m,

so that the combination of the last two formulas will give:

L _ K(m~) – E(m~)

%– E(m) “
(3.3)

[n order to get the polarizability, we have to integrate the

potential along the line orthogonal to the y axis (1, 2 line in
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1.3

“h i

0 0.2 04 06 0,8 1
P

Fig. 11. fg= W versus p. Uppermost curve hasthe~laueof L= 0.0,

followed by the curves with the parameters L = 0.02.0.1,0.2,0.5,1.0, and
2.0.

Fig. 13)inthe z-plane andemanating frompoint 4. Integration

is done in the w plane and we get:

;+2:= W),
E(m)

(3.4)

where 0 = a + i~ and E(9, m) = ~~ d~~~.

In the symmetric case the transformation w = –t2 brings

the potential to the form @ = (E/2) Re(t). In the antisym-

metric case the transformation is w = t2 and the potential

becomes @ = (E/2) Ire(v). Combining now the formulas 3.2,

3.3, and 3.4, one obtains

() E bfi
0. X,y=: =–—

2 E(m)
COS a cosh ~,

‘a(xy=:)=:%cosasinhp ‘3’)

The real variables a and ~ are found numerically by inverting

(3.4) for y = L/2 and O < x < b. This inversion is achieved

by the use of Mathematical, which handles special functions

with ease. Integrating (3.5) gives the numerical results accurate

to four significant figures, as can be confirmed by reducing

the integration step in a few sample calculations. They give

the values of x and @y for p = 1. Further reduction of the

integration step would increase the accuracy, but the time of

integration would also increase. The compromise gives the

achieved accuracy.

IV. SUMMARY

The penetration of electric and magnetic fields through

an elliptical hole in a wall of finite thickness has been

investigated. The inside and outside polarizability of the hole

are calculated as a function of the parameter p = (a–b)/(a+b)

and the relative thickness of the wall (L/a or L/b) and

displayed in Figs. 3, 4, and 5.
The inside and outside magnetic susceptibilities of the hole

in two perpendicular directions (parallel to the major and
minor axes of the ellipse) are calculated and shown in Figs.

7–12. A combination of analytical treatment of the Mathieu

0,1

-0.8 I I
0 0.20.40 .u ,81 12141.61.82

‘ig 12 ‘ad%;:’)+ ~ ~. The lowest curve has the value of p = 0.0;

the uppermost is for p = 1.0.

/’

;!
1 z

4 5

L 2 3 L-IA--k
t

>

2b

Fig. 13. The Schwarz-Cristoffel transformation maps the polygon (1,2,3,4,5)

iu the z plane into the upper half of the w plane. The upper half of w plane
is then mapped into the t plane in which the potential is homogeneous.

equation and numerical results gives good results for the

values of the parameter p < 0.8. The Schwarz-Cristoffel

conformal mapping technique gives the solution to the problem

for p = 1. By judicious choice of plotted variables, we were

able to interpolate smoothly, and thus cover the whole region

0< p <1 corresponding to all vahtes of eccentricities of the

ellipse.

For the magnetic susceptibility in x direction, we know that

for any thickness L of the wall the value of ~.. must be zero

when p = 1. We were not able to find a simple dependence

of$zZon pfor0.8<p<l when L#O.

Our results are in good agreement (four significant figures)

with the known results for different limiting cases: 1) when

the thickness of the wall goes to zero (analytical results are

available), 2) when the ellipse approaches the circle (the

results are given in [8]), and 3) when b/u ~ O, in which

case a two-dimensional problem is obtained and solved by

the Schwarz-Cristoffel conformal mapping technique. The

analysis of the general case that we present in this paper is

based on the properties of the Mathieu equation and differs

mutually from any of the three methods used to calculate the

three limiting cases.

V. APPENDIX

In what follows, the basic properties of the solutions of the

Mathieu and the modified Mathieu equations are analyzed.

Most of the analytic and numerical results we need are

assembled in [11], but the numerical results give the properties
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of these solutions only for h < 10. Asymptotic expression of

the solution of the periodic equation is not valid in the whole

region (0, 27r). Since we need the solutions for h up to 2000,

more numerical and analytical work is needed.

A. Characteristic Values

We are looking for the solutions of the Mathieu equation that

are periodic with periods r and 27r. The values of b that give

such solutions for any given h are called the characteristic

values. They, of course, depend on h and comprise curves

bem(m = 0,1,2,3,... )andbo~(m = 1,2,3,... )inthe(~, h)

plane (Fig. 2). From each of the points m,z(rn = 1,2,.. .),

two curves originate (bon and hem), the first one being

positioned to the left with respect to the latter one. From

the point (0, O) only one curve originates—be.. The curves

bom(m = 2,4,6,... ) are not displayed since we do not need

them. For small h we use power series expansion [12], for

intermediate values (5 < h < 100) we use numerical methods,

and for large values of h and asymptotic series is given:

cc

b = ~ a,h-’, (Al)
i=—l

where the first several terms are: a_l = v,

ao =—*, al =—*, aJ = —5”4+~$2+g ,a3 =

_ 33V5+41OV3+4O5V a4 =– 63u6+1260v4+2943 /+486
214 216 ,a5 =

_ 527V7+15617V5 +69001 V3+41607U
220 andv=2r+l for the

function be. and u = 2r – 1 for the function bo.. We achieve

high accuracy for these curves (at least 10 significant figures).

B. Solutions

The symmetry conditions require that in the electric case we

take only those solutions that are periodic with period m and

symmetric with respect to transformation q -+ – q. That brings

us to the curves be2m m = O, 1,2, . . . where the solution has

the form
w

G(q) = Sezm(h) q) = ~ Be~~(h) cos(2rz~),
n=o

?rL=o, 1,2, ,.. . (A.2)

The normalization condition that we use is
CO

G(q = O) = 1 a ~Be~~(h) = 1. (A.3)
n=o

Inserting the Fourier series (A.2) into the differential equation

(2.7c), one derives (Be~~B2n):

B2 = koBo,

Bd = k2B2 – 2B0,

A“2rLBzn = Bzn+2 + B2n–2

km = }A–2(4b – 2h2 – 4m2). (A.4)

If one defines G~ = Bm/B~–2, m = 2,4, . . . one has:

G2 = ko, Gb = kz – 2/ko,

G2m = k2n_2 –
1

rk2n_4– ~, 1
n.> 2, (A.5)

~n_~—...

which together with (A.3) gives us the values for Be~~ (h).

Since in (A.5) we have to divide by terms that can be zero, we

use relational approximation for treating continued fractions

[8], which gives us results accurate to at least 10 significant

figures, but only for k < HCr E 20.00. This is because Be~~

alternate in signs, grow exponentially, but have to satisfy

A.3, so for h % 50 one would have to know B’s with the

accuracy of 22 significant figures in order to satisfy (A.3)

to two significant figures. This forces us to use asymptotic

expression for values of h > 20.

The solution for two different magnetic cases will be of the

form:

H. # O, HV = o ~ G(q) E Se2~+l(h, q)

“E’Be~Y$/(h) COS[(27Z+ l)?)],
n=o

H. = O, H, # O + G(q) E So2~+1(h, ~)

= EBOZ$:
(h) sin[(2n + 1)~].

rl=o

(A.6)

This is so because we want the solution to be even for

q-–qand odd for~d~–rj when Hz#O andto

have opposite symmetry when HU # O. The relevant formulas

for Be~Y~~ (h) and Bo~~~j (h) are derived in an analogous

way to those in (A.2)–(A.4). The solutions for the modified

(radial) Mathieu (2.7b) are given as:

F(<) E JeJ.+p(h, <)

= @(-l)” “f’-l)kBej~~(h)JJ~+p( hcosht) >
k=o

J’(O = Jw.+p(i <)

= fi(-1)” tanh(~) ~(-1)’(2k +p)
k=o

X Bo;;~(h)J2k+P(h coshf), (A.7)

where r = O, 1,2, . . . . p = O, l,Je~ is defined on hem(h),

Jom is defined on bom (h) and J’s are the Bessel functions.

The normalization in these solutions is chosen in such a way

to give simple asymptotic expansion when ( + co:

Je~(h, ~) ~ Jom(h, g)

~ cos[h cosh & – (2m + 1)~/4]/~h cosh ~.

Unfortunately, numerical analysis shows that this simple

asymptotic expansion is good only for moderate values of

h—when (A.7) converges rapidly enough. The other solution

to (2.7b) blows up at the origin and is not of interest.

C. Asynlptotic Expressions Elementary numerical analysis

shows that the solution for the Mathieu equation has expo-

nential behavior for large values of h. Since the solution for

the radial equation is related to the solution of the Mathieu

equation by the replacement of a real

imaginary one, one can look for the

equation in the following form [11]:

argument by a purely

solution of the radial
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Substituting this expansion into 2.7b and using A. 1 one arrives

at:

Jer = [$’O(&) cos a + FI (~) sin a] ~=,

Jor+l % [Fo(&) sin u – F1 (~) cos o] ~-, (A.8)

where a = h sinh & – (2T + 1) arctan(tanh(~/2)), .v = 2r+ 1,

and

Fo(&) = 1 + v
4h cosh2 (

[

1 V*+ 86V2 + 105 V4 + 22V2 + 57
+~ 512cosh4 < – 512cosh2 ~ 1

[1 3V5 + 290v3 + 1627v
+~ 2048 COSh6 ~

2V5 + 124v3 + 1122v—
2048 cosh4 ~

.v5 + 14V3 + 33V—
2048 cosh2 ~ 1+“””,

Fl(t)=(V3+3) sinhf

16h cosh2 ~

+
sinh [

[

~3 + Sv + 4V3 + 44V

128h2 cosh2 < cosh2 ~ 1
[sin h~ V6 + 505v4 + 12139v2 + 10395

+ h3 24576 cosh6 <

Z/e – 47v4 + 667u2 + 2835—
24576 cosh4 <

5.!/4 + 341/2 + 9
+

2048 cosh2 ~ 1
+“””

This expansion easily gives us six significant figures accuracy

for any h > HCr. The same procedure will gives us the

expansion for Se and So solutions of the Mathieu equation:

Ser(h, ~) ~ OT{W1[PO(V) – PI(T))]

+ W2[PO(?7) + P~(q)]},

Sor+l(h, ~) ~ ~,+1 {Wl [F’O(~) – P1(~)]

- w2[l’o(77) + ~1(~)1})

where v = 2r + 1 and

W~(q) = ehsin~
[C’’s(; + :)12”+1/(+’+1

W2(77) = e-hsinq
[Sin(: + 312’’+1/(-)’+1

[

4V2 + 3 19r/3 + 59V
o.(h) = 2“–* 1 + -& + —

s~h2 + 256h3 +

[

2V2 + 3 7V3 + 47r/
~r+l(h) =2r–* h–v/4– ~ –

256h2

(A.9)

1

–1
“>

1

–1
. . . 7

and where P.(q) and P1 (q) are obtained from F.(~) and
F1 (&) by substitution cosh & ~ cos q and sinh & ~ sin q.

Since in the process of deriving (A.9) we had to divide by

cos q, it comes to no surprise that (A.9) is divergent at 7r/2.

Taylor series expansion is used in the region around r/2 and

matched with the formulas A.9. Here comes the first serious

problem: At what point between O and 7r/2 do we match A.9

and the Taylor expansion? Numerical analysis shows that that

point depends strongly on r and on h. We are at this point

tempted to find another asymptotic expansion for the solution

of (2.3c)—WKB expansion.
d2G(qThe solution of the equation ~ – AQ(q)G(q) = O

for A large can easily be expanded into series in I/A. But

the Mathieu equation gives us two problems here: Q(q) =

(&cos2 q) has second-order zero 7r/2, thus giving the solution

in terms of the confluent hypergeometric function of the third

kind (Whittaker functions) [14], which are difficult to handle

when we impose bound~ conditions (A.3), and worse, ~

depends on h, which has the effect that the independent

expansion variable in the Whittaker function also depends on

h. Numerical trials show that for h we are interested in that

series does not converge.

That sends us back to A.9. We find numerically that the

point p(h) between O and 7r/2 at which matching is done
depends on h in a simple way: p(h) = ~~o gih-i, where

only several terms are needed and where constants gi depend

on which curve be., bov we are on. Twenty terms in the Taylor

expansion and 5 terms in p give us 4 to 5 significant figures

for any h.

We now look in some details at the following constructs:

/

2?7

N2~(h) = cZ~[Se2m(h, ~)]2
o

–7r[21?; +B; +B; +...],.

/

2X
N;m+l(h) = dr)[Sez~+~(h,~)]2

o

=7r[B:+B; +B; +...],

1

2X

~;m+l(~l) = dr7[so2m+l(h,77)]2
o

=’/r[B: +B; +Bg +...]. (A.1O)

The right hand sides are numerically valid for h < HCr = 20.

For higher values of h expansion A.9 is used together with

the Laplace method for the asymptotic evaluation of integrals

(see, for example [15]). It follows that

~:o – 1
{

~ez~~~o(h), m = 0,1,2,...,
hm h

(All)

where N~;O = ~~o a~h-i and only several terms are needed
to achieve desired accuracy.

Next we take the cross product

!

.27?

qg+7.,q)(2rn+,)
(hq> }L) = G2P+,,q(hq, ~)Gz~+r(h, n),

o

?-=(),1, p,m=o,1,2, ...,

where G = Se, So and hq is a certain fixed value of h on the

corresponding curve be or bo. If both G’s are evahtated on the

same curve (m = p) K # O for hq = h and K = O for hq = h

if m # p. Using (A.9) and the Laplace method, we obtain:

‘~ij+r,g)(2m-tr) (h,, h)

(A.12)
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withs=Oifp=m, s=l if P#m, h=~(h+hg) and

~ = 2X33z~=o %h ‘ih;~. Again, only sev>ral terms are

to be calculated. for h < H.., the K’s are calculated in terms

of the B’s, like in (A.1O).

C. Orthonormality Relations

There are several orthonormality relations satisfied by the

solutions of the Mathieu and modified Mathieu equations

which we need. They are listed below:

J
2T

dqGm(h, q) Gp(h, v) = r%np~m(h)>
o

Jo JO

= &6(h – h’)&JVrn(h), (A.13)

The function G is Se or So, R~~ = Rrn(hn, f,q),

R~(hn,~, ~) = G~(h, ~) Fm(h, &), l?~(h, ~) = Jem(h, ~) or

Jom (h, ~) and CO is the value of the radial elliptical coordinate

& at the wall of the hole. At that point and for special values

of h = hq, and h = hs~,s = 1,2, 3,. ... Jez~(hq, &O) = O,
~J. >.2m+1 (h,,~o)

and ae = O. These relations are derived from

the differential equations 2.7b,c only. Equations are written

for different characteristic values, multiplied by appropriate

solutions corresponding to any other characteristic value, and

summed, subtracted, and integrated by parts, in the process of

which some terms drop out due to the boundary conditions.

For the relation A. 13c we also need the asymptotic forms for

Je and Jo (the one following formula A.7). The parts of the

quantity Alma containing only periodic solutions can easily

be calculated in terms of coefficients B~, while the parts that

contain Je or Jo solutions must by integrated numerically.
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